Autor Tema: Lógica Difusa (Fuzzy Logic)  (Leído 2405 veces)

0 Usuarios y 1 Visitante están viendo este tema.

Desconectado sebastianfpr

  • PIC10
  • *
  • Mensajes: 30
Lógica Difusa (Fuzzy Logic)
« en: 10 de Abril de 2013, 16:21:26 »
Hola a Todos,

Las personas que estén interesadas en poder pasar un Sistema Lógico Difuso Tipo Mamdani a un microcontrolador PIC pueden contactarme a mi correo: sebaspr@outlook.com.

Se cuidan...
Todos los días la gente se arregla el cabello, ¿Por qué no el Corazón? - Che Guevara -

Sebastián Puente R.

Desconectado jeremylf

  • Colaborador
  • PIC24H
  • *****
  • Mensajes: 1341
Re: Lógica Difusa (Fuzzy Logic)
« Respuesta #1 en: 11 de Abril de 2013, 01:21:42 »
Hola.. Yo estoy interesado, estuve leyendo uno de tus post de hace tiempo intentado entender un ejemplo que publicaste y en eso estoy, ya voy entendiendo bien la base.. digamos que un 40%. Estuviera bueno que pudieras explicar un poco ese codigo, a grandes rasgos, si no es mucho pedir. De todas formas, gracias por la publicacion que me sirve de mucho.

Al codigo que me refiero es esto: http://www.todopic.com.ar/foros/index.php?topic=26153.msg245487#msg245487

Exitos.

Desconectado sebastianfpr

  • PIC10
  • *
  • Mensajes: 30
Re: Lógica Difusa (Fuzzy Logic)
« Respuesta #2 en: 16 de Abril de 2013, 02:28:45 »
INTRODUCCIÓN

El concepto de lógica difusa fue introducido por Lotfi Zadeh en 1965 con su famoso artículo “Fuzzy Sets” [1]. Zadeh presentó los conjuntos difusos para procesar y manipular información y datos afectados de incertidumbre e imprecisión no probabilística. Fueron diseñados para representar matemáticamente incertidumbre y vaguedad, y proporcionar herramientas formalizadas para trabajar con la imprecisión intrínseca en muchos problemas. La lógica difusa debe su éxito gracias a que puede procesar información lingüística y numérica sin la necesidad de un modelo matemático preciso, ya que actúa de acuerdo a información empírica establecida mediante reglas difusas dictadas por un experto [2], [3]. De ahí, su creciente intervención en la ingeniería como solución a problemas y un sinnúmero de aplicaciones en diferentes sectores de la industria donde se hace casi imposible la obtención de modelos exactos que involucren todas las excepciones posibles en un sistema [4], [5]. Ha sido tanta la aceptación de la lógica difusa que desde hace varios años es ampliamente utilizada para aplicaciones en el hogar [6].

Los sistemas de control automático han sido el campo más explotado de la lógica difusa con sus inicios en 1972 cuando Mamdani aplicó un algoritmo difuso para el control de una planta donde la inferencia es realizada a través de una base de reglas [7]. En 1984, Sugeno presentó un control difuso para el parqueo automático de un automóvil, donde el esquema de control difuso tiene un consecuente basado en ecuaciones lineales de primer orden, proporcionando así, más versatilidad a los sistemas difusos [8], [9].

La implementación de Sistemas Lógicos Difusos (SLD) ha sido diversa de acuerdo a los requisitos de las diferentes aplicaciones. Se tienen las implementaciones software, las cuales se caracterizan por el uso de un lenguaje de programación de alto nivel, presentando la desventaja de la ejecución de un código secuencial, lo que hace que este tipo de implementaciones deban aplicarse a procesos que no demanden un alto tiempo de respuesta en la salida del SLD. Las implementaciones software tienen la gran ventaja  del bajo costo, mayor versatilidad y la posibilidad de ser llevadas a sistemas embebidos como un microcontrolador (MCU), obteniéndose así, en adición, las ventajas de este tipo de sistemas [10], [11], [12], [13].

Desde mediados de 1980 se han presentado una buena cantidad de implementaciones de SLD en hardware, donde su ventaja principal es la alta velocidad de procesamiento y el uso del paralelismo. La desventaja de las implementaciones hardware es el alto costo de la tecnología utilizada, Very Large Scale Integration (VLSI), Application-Specific Integrated Circuit (ASIC), y Field Programmable Gate Arrays (FPGA) [14] y la necesidad de hardware periférico. Sin embargo, son la opción a elegir cuando de acuerdo a la aplicación se requieran SLD de alta velocidad de respuesta.

Nota: Los números que están dentro de [] son las referencias que más adelante les compartiré.
« Última modificación: 16 de Abril de 2013, 02:57:22 por sebastianfpr »
Todos los días la gente se arregla el cabello, ¿Por qué no el Corazón? - Che Guevara -

Sebastián Puente R.

Desconectado sebastianfpr

  • PIC10
  • *
  • Mensajes: 30
Re: Lógica Difusa (Fuzzy Logic)
« Respuesta #3 en: 16 de Abril de 2013, 02:58:00 »
SUPER LIBROS RECOMENDADOS

Bueno, quiero recomendarles unos libros geniales donde podemos profundizar muchos de los aspectos de la Lógica Difusa y los Sistemas Lógicos Difusos (conjuntos difusos, sistemas difusos, inferencia difusa, entre otros).

En lo personal me gustan mucho estos libros y son lo que mayormente consulto:

  • G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice -Hall, Englewood Cliffs, NJ, 1995.
  • T.J. Ross, Fuzzy Logic With Engineering Applications. McGraw-Hill, 1997.
  • J. Lilly, Fuzzy Control and Identification, Wiley-IEEE Press, 2010.
  • J.M. Mendel, "Fuzzy logic systems for engineering: a tutorial," Proceedings of the IEEE, vol.83, no.3, pp.345-377, Mar 1995. (artículo)
  • W. Pedrycz, F. Gomide, Fuzzy Systems Engineering:Toward Human-Centric Computing, Wiley-IEEE Press, 2007.

De verdad que son muy buenos libros y de fuentes muy serias, 100% recomendado.

sebastianfpr.
« Última modificación: 03 de Mayo de 2013, 01:36:37 por sebastianfpr »
Todos los días la gente se arregla el cabello, ¿Por qué no el Corazón? - Che Guevara -

Sebastián Puente R.

Desconectado sebastianfpr

  • PIC10
  • *
  • Mensajes: 30
Re: Lógica Difusa (Fuzzy Logic)
« Respuesta #4 en: 03 de Mayo de 2013, 01:40:57 »
Precisión y significancia en la información

La Lógica Difusa permite representar el conocimiento común, que es mayoritariamente del tipo lingüístico cualitativo y no necesariamente cuantitativo, en un lenguaje matemático a través de la teoría de los conjuntos difusos y funciones características asociadas a ellos. Permite trabajar a la vez con datos numéricos y términos lingüísticos; los términos lingüísticos son inherentemente menos precisos que los datos numéricos pero en muchas ocasiones aportan una información más útil para el razonamiento humano.

En palabras de Zadeh, las características más notables de la Lógica Difusa son:

   En lógica difusa todo es cuestión de grado.
   El razonamiento exacto es un caso límite del razonamiento aproximado.
   En lógica difusa el conocimiento se interpreta como una colección de restricciones elásticas (difusas) sobre un conjunto de variables.
   En lógica difusa la inferencia puede verse como la propagación de un conjunto de restricciones elásticas.
   Sistema Difuso: resultado de la “fuzzificación” de un sistema convencional.
   Los sistemas difusos operan con conjuntos Difusos en lugar de números.
   En esencia la representación de la información en sistemas difusos imita el mecanismo de razonamiento aproximado que realiza la mente humana.
Todos los días la gente se arregla el cabello, ¿Por qué no el Corazón? - Che Guevara -

Sebastián Puente R.

Desconectado sebastianfpr

  • PIC10
  • *
  • Mensajes: 30
Re: Lógica Difusa (Fuzzy Logic)
« Respuesta #5 en: 03 de Mayo de 2013, 11:58:31 »
SISTEMA DIFUSO

Hola Amigos, vamos a ver un claro ejemplo de la vida real de lo que seria un Sistema Difuso.

Cuando una persona está conduciendo un auto surge la pregunta de qué ruta tomar hacia el destino deseado, usualmente se tienen varias rutas candidatas para elegir. Esta persona tiene en su mente un conjunto de reglas que le ayudarán a decidir cuál ruta tomar. Estas reglas pueden ser algo como, “Si la distancia de la ruta es corta y no tiene muchos giros, y no se entra en calles congestionadas, entonces la ruta es deseable.” Otra podría ser, “Si la ruta pasa por calles estrechas y pasa cerca de la zona que justamente acaban de decir por la radio que esta congestionada, y es hora pico, entonces la ruta es no deseable.” Es posible que esta persona tenga varias reglas como estas en su cabeza, y para cualquier situación dada, de alguna manera debe balancear todas estas reglas para poder obtener la ruta que tomará hacia el destino deseado. Este proceso de decisión es un sistema difuso, y la gente emplea este tipo de razonamiento todo el tiempo, desde decidir cómo invertir su dinero hasta decidir a qué restaurante ir.

Los sistemas difusos son capaces de hacer frente a problemas muy complejos que serían imposibles de modelar matemáticamente. Además, los sistemas difusos son empleados con éxito por personas sin ningún tipo de conocimiento técnico alguno. Las personas resuelven este tipo de problemas sin tener ningún tipo de experiencia en control o matemáticas. El proceso de razonamiento usado puede ser fácil y lógicamente expresado en términos de sistemas difusos. Incluso, se pueden llegar a determinar un conjunto de reglas difusas para resolver algún problema específico.

Espero sus opiniones...
« Última modificación: 03 de Mayo de 2013, 13:30:55 por sebastianfpr »
Todos los días la gente se arregla el cabello, ¿Por qué no el Corazón? - Che Guevara -

Sebastián Puente R.

Desconectado sebastianfpr

  • PIC10
  • *
  • Mensajes: 30
Re: Lógica Difusa (Fuzzy Logic)
« Respuesta #6 en: 03 de Mayo de 2013, 11:59:23 »
CONOCIMIENTO EXPERTO

El término “heurístico” hace referencia al conocimiento que es adquirido mediante la experimentación o el ensayo y error. Cada una de las personas posee grandes reservas de conocimiento heurístico que se han acumulado a lo largo de los años por la realización de muchas tareas. Por ejemplo, saber cocinar espaguetis o interpretar algún instrumento musical. Estas habilidades no vienen de forma instantánea sino después de mucha práctica.

No es raro que una persona pueda operar un proceso bastante complejo por si misma usando solo conocimiento heurístico sin la ayuda de un sistema de control en lazo cerrado. Por ejemplo, un conductor de camión experimentado puede ir en reversa con un semirremolque hacia un muelle de carga sin la ayuda de un sistema de control. Los pilotos pueden aterrizar aeronaves usando solamente la experiencia de los aterrizajes anteriores. El personal de emergencia puede elegir las mejores rutas a tomar a través de las áreas urbanas congestionadas mediante los años de experiencia de conducción en el área.

Todas las situaciones anteriores son ejemplos de “conocimiento experto,” y es una de las grandes fortalezas del control difuso el poder incorporar este conocimiento.
Todos los días la gente se arregla el cabello, ¿Por qué no el Corazón? - Che Guevara -

Sebastián Puente R.

Desconectado sebastianfpr

  • PIC10
  • *
  • Mensajes: 30
Re: Lógica Difusa (Fuzzy Logic)
« Respuesta #7 en: 03 de Mayo de 2013, 13:30:07 »
CONCEPTOS BÁSICOS DE LOS CONJUNTOS DIFUSOS

El fundamento de la lógica difusa es el conjunto difuso. El concepto de conjunto difuso fue introducido por primera vez por Lotfi Zadeh en 1965  para procesar y manipular información y datos afectados de incertidumbre e imprecisión no probabilística. Fueron diseñados para representar matemáticamente incertidumbre y vaguedad, y proporcionar herramientas formalizadas para trabajar con la imprecisión intrínseca en muchos problemas. El conjunto difuso es una generalización del conjunto convencional, o crisp.

Un conjunto difuso es una colección de números reales teniendo una membresía parcial dentro del conjunto. Lo anterior en contraste con los conjuntos crisp, donde un número puede pertenecer o no pertenecer, pero no pertenecer parcialmente. Luego, se necesitan dos cosas para especificar un conjunto difuso: los miembros del conjunto y el grado de membresía de cada miembro dentro del conjunto. Una membresía total al conjunto es especificada por un valor de membresía de 1, la exclusión absoluta al conjunto es especificada por un valor de membresía de 0, y una membresía parcial al conjunto es especificada por un valor de membresía entre 0 y 1.

Veamos un ejemplo de la vida real:

Se tiene el conjunto “hombres altos”. De acuerdo a la Lógica Clásica el anterior conjunto es un conjunto al que pertenecerían los hombres con una estatura mayor a un cierto valor, que podría ser por ejemplo 1.80 metros, y todos los hombres con una altura inferior quedarían fuera del conjunto (ver figura). Luego, si un hombre mide 1.81 metros pertenecería al conjunto “hombres altos”, y en cambio un hombre que mida 1.79 metros ya no pertenecería a ese conjunto. Sin embargo, no es muy lógico decir que un hombre es alto y otro no lo es cuando sus alturas difieren en dos centímetros. Pero si retomamos lo anterior hacia el enfoque de la Lógica Difusa y los conceptos mencionados anteriormente sobre los conjuntos difusos, por ejemplo, un hombre que mida 1.79 metros podría pertenecer al conjunto difuso “hombres altos” con un grado de 0.8 (80%) de pertenencia y puede pertenecer (si definimos un nuevo conjunto “hombres bajos”) al conjunto difuso “hombres bajos” con un grado de 0.2 (20%).

De acuerdo al anterior ejemplo, se puede ver que en la teoría de conjuntos difusos, un elemento puede pertenecer a varios conjuntos difusos (con un universo de discurso común) con diferente grado de membresía o pertenencia, algo que resulta muy diferente a la lógica clásica.

Todos los días la gente se arregla el cabello, ¿Por qué no el Corazón? - Che Guevara -

Sebastián Puente R.

Desconectado gab163

  • PIC16
  • ***
  • Mensajes: 111
Re: Lógica Difusa (Fuzzy Logic)
« Respuesta #8 en: 28 de Mayo de 2013, 15:22:11 »
Algo de Takagi-sugeno?