Autor Tema: Video compuesto para TV con pic16f84  (Leído 6652 veces)

0 Usuarios y 1 Visitante están viendo este tema.

Desconectado jorgenuviola

  • PIC16
  • ***
  • Mensajes: 148
    • rat argentina!!
Re: Video compuesto para TV con pic16f84
« Respuesta #15 en: 20 de Septiembre de 2014, 10:33:55 »
Gracias estimado!!!

listo hoy lo pruebo, a ver que sale y completo el programa con los comentarios para que se pueda seguir

Desconectado jorgenuviola

  • PIC16
  • ***
  • Mensajes: 148
    • rat argentina!!
Re: Video compuesto para TV con pic16f84
« Respuesta #16 en: 20 de Septiembre de 2014, 12:46:17 »
todavia no cambie nada, probe en la otra tv me la traje para probar de nuevo





feature=youtu.be

Desconectado Vangeluz

  • PIC12
  • **
  • Mensajes: 74
    • Vangeluzweb
Re: Video compuesto para TV con pic16f84
« Respuesta #17 en: 05 de Octubre de 2014, 02:18:39 »
Hola Jorge, has probado con la rutina de retardos de Editorial Ra-ma ?, quizá se te haga mas fácil ( digo yo  :? ).
Simplemente al final de tu programa antes de END pones:

   INCLUDE  <RETARDOS.INC>   ; Librería con subrutinas de retardo.

Luego desde el programa lo llamas con ( CALL ) por ejemplo:

        call      Retardo_4micros

Tienes creo desde 4 micro-segundos hasta 20 segundos.

La libreria es:


Código: [Seleccionar]
;**************************** Librería "RETARDOS.INC" *********************************
;
; ===================================================================
;   Del libro "MICROCONTROLADOR PIC16F84. DESARROLLO DE PROYECTOS"
;   E. Palacios, F. Remiro y L. López.
;   Editorial Ra-Ma.  www.ra-ma.es
; ===================================================================
;
; Librería con múltiples subrutinas de retardos, desde 4 microsegundos hasta 20 segundos.
; Además se pueden implementar otras subrutinas muy fácilmente.
;
; Se han calculado para un sistema microcontrolador con un PIC trabajando con un cristal
; de cuarzo a 4 MHz. Como cada ciclo máquina son 4 ciclos de reloj, resulta que cada
; ciclo máquina tarda 4 x 1/4MHz = 1 µs.
;
; En los comentarios, "cm" significa "ciclos máquina".
;
; ZONA DE DATOS *********************************************************************

CBLOCK
R_ContA ; Contadores para los retardos.
R_ContB
R_ContC
ENDC
;
; RETARDOS de 4 hasta 10 microsegundos ---------------------------------------------------
;
; A continuación retardos pequeños teniendo en cuenta que para una frecuencia de 4 MHZ,
; la llamada a subrutina "call" tarda 2 ciclos máquina, el retorno de subrutina
; "return" toma otros 2 ciclos máquina y cada instrucción "nop" tarda 1 ciclo máquina.
;
Retardo_10micros ; La llamada "call" aporta 2 ciclos máquina.
nop ; Aporta 1 ciclo máquina.
nop ; Aporta 1 ciclo máquina.
nop ; Aporta 1 ciclo máquina.
nop ; Aporta 1 ciclo máquina.
nop ; Aporta 1 ciclo máquina.
Retardo_5micros ; La llamada "call" aporta 2 ciclos máquina.
nop ; Aporta 1 ciclo máquina.
Retardo_4micros ; La llamada "call" aporta 2 ciclos máquina.
return ; El salto del retorno aporta 2 ciclos máquina.
;
; RETARDOS de 20 hasta 500 microsegundos ------------------------------------------------
;
Retardo_500micros ; La llamada "call" aporta 2 ciclos máquina.
nop ; Aporta 1 ciclo máquina.
movlw d'164' ; Aporta 1 ciclo máquina. Este es el valor de "K".
goto RetardoMicros ; Aporta 2 ciclos máquina.
Retardo_200micros ; La llamada "call" aporta 2 ciclos máquina.
nop ; Aporta 1 ciclo máquina.
movlw d'64' ; Aporta 1 ciclo máquina. Este es el valor de "K".
goto RetardoMicros ; Aporta 2 ciclos máquina.
Retardo_100micros ; La llamada "call" aporta 2 ciclos máquina.
movlw d'31' ; Aporta 1 ciclo máquina. Este es el valor de "K".
goto RetardoMicros ; Aporta 2 ciclos máquina.
Retardo_50micros ; La llamada "call" aporta 2 ciclos máquina.
nop ; Aporta 1 ciclo máquina.
movlw d'14' ; Aporta 1 ciclo máquina. Este es el valor de "K".
goto RetardoMicros ; Aporta 2 ciclos máquina.
Retardo_20micros ; La llamada "call" aporta 2 ciclos máquina.
movlw d'5' ; Aporta 1 ciclo máquina. Este es el valor de "K".
;
; El próximo bloque "RetardoMicros" tarda:
; 1 + (K-1) + 2 + (K-1)x2 + 2 = (2 + 3K) ciclos máquina.
;
RetardoMicros
movwf R_ContA ; Aporta 1 ciclo máquina.
Rmicros_Bucle
decfsz R_ContA,F ; (K-1)x1 cm (cuando no salta) + 2 cm (al saltar).
goto Rmicros_Bucle ; Aporta (K-1)x2 ciclos máquina.
return ; El salto del retorno aporta 2 ciclos máquina.
;
;En total estas subrutinas tardan:
; - Retardo_500micros: 2 + 1 + 1 + 2 + (2 + 3K) = 500 cm = 500 µs. (para K=164 y 4 MHz).
; - Retardo_200micros: 2 + 1 + 1 + 2 + (2 + 3K) = 200 cm = 200 µs. (para K= 64 y 4 MHz).
; - Retardo_100micros: 2     + 1 + 2 + (2 + 3K) = 100 cm = 100 µs. (para K= 31 y 4 MHz).
; - Retardo_50micros : 2 + 1 + 1 + 2 + (2 + 3K) =  50 cm =  50 µs. (para K= 14 y 4 MHz).
; - Retardo_20micros : 2     + 1     + (2 + 3K) =  20 cm =  20 µs. (para K=  5 y 4 MHz).
;
; RETARDOS de 1 ms hasta 200 ms. --------------------------------------------------------
;
Retardo_200ms ; La llamada "call" aporta 2 ciclos máquina.
movlw d'200' ; Aporta 1 ciclo máquina. Este es el valor de "M".
goto Retardos_ms ; Aporta 2 ciclos máquina.
Retardo_100ms ; La llamada "call" aporta 2 ciclos máquina.
movlw d'100' ; Aporta 1 ciclo máquina. Este es el valor de "M".
goto Retardos_ms ; Aporta 2 ciclos máquina.
Retardo_50ms ; La llamada "call" aporta 2 ciclos máquina.
movlw d'50' ; Aporta 1 ciclo máquina. Este es el valor de "M".
goto Retardos_ms ; Aporta 2 ciclos máquina.
Retardo_20ms ; La llamada "call" aporta 2 ciclos máquina.
movlw d'20' ; Aporta 1 ciclo máquina. Este es el valor de "M".
goto Retardos_ms ; Aporta 2 ciclos máquina.
Retardo_10ms ; La llamada "call" aporta 2 ciclos máquina.
movlw d'10' ; Aporta 1 ciclo máquina. Este es el valor de "M".
goto Retardos_ms ; Aporta 2 ciclos máquina.
Retardo_5ms ; La llamada "call" aporta 2 ciclos máquina.
movlw d'5' ; Aporta 1 ciclo máquina. Este es el valor de "M".
goto Retardos_ms ; Aporta 2 ciclos máquina.
Retardo_2ms ; La llamada "call" aporta 2 ciclos máquina.
movlw d'2' ; Aporta 1 ciclo máquina. Este es el valor de "M".
goto Retardos_ms ; Aporta 2 ciclos máquina.
Retardo_1ms ; La llamada "call" aporta 2 ciclos máquina.
movlw d'1' ; Aporta 1 ciclo máquina. Este es el valor de "M".
;
; El próximo bloque "Retardos_ms" tarda:
; 1 + M + M + KxM + (K-1)xM + Mx2 + (K-1)Mx2 + (M-1) + 2 + (M-1)x2 + 2 =
; = (2 + 4M + 4KM) ciclos máquina. Para K=249 y M=1 supone 1002 ciclos máquina
; que a 4 MHz son 1002 µs = 1 ms.
;
Retardos_ms
movwf R_ContB ; Aporta 1 ciclo máquina.
R1ms_BucleExterno
movlw d'249' ; Aporta Mx1 ciclos máquina. Este es el valor de "K".
movwf R_ContA ; Aporta Mx1 ciclos máquina.
R1ms_BucleInterno
nop ; Aporta KxMx1 ciclos máquina.
decfsz R_ContA,F ; (K-1)xMx1 cm (cuando no salta) + Mx2 cm (al saltar).
goto R1ms_BucleInterno ; Aporta (K-1)xMx2 ciclos máquina.
decfsz R_ContB,F ; (M-1)x1 cm (cuando no salta) + 2 cm (al saltar).
goto R1ms_BucleExterno ; Aporta (M-1)x2 ciclos máquina.
return ; El salto del retorno aporta 2 ciclos máquina.
;
;En total estas subrutinas tardan:
; - Retardo_200ms: 2 + 1 + 2 + (2 + 4M + 4KM) = 200007 cm = 200 ms. (M=200 y K=249).
; - Retardo_100ms: 2 + 1 + 2 + (2 + 4M + 4KM) = 100007 cm = 100 ms. (M=100 y K=249).
; - Retardo_50ms : 2 + 1 + 2 + (2 + 4M + 4KM) =  50007 cm =  50 ms. (M= 50 y K=249).
; - Retardo_20ms : 2 + 1 + 2 + (2 + 4M + 4KM) =  20007 cm =  20 ms. (M= 20 y K=249).
; - Retardo_10ms : 2 + 1 + 2 + (2 + 4M + 4KM) =  10007 cm =  10 ms. (M= 10 y K=249).
; - Retardo_5ms  : 2 + 1 + 2 + (2 + 4M + 4KM) =   5007 cm =   5 ms. (M=  5 y K=249).
; - Retardo_2ms  : 2 + 1 + 2 + (2 + 4M + 4KM) =   2007 cm =   2 ms. (M=  2 y K=249).
; - Retardo_1ms  : 2 + 1     + (2 + 4M + 4KM) =   1005 cm =   1 ms. (M=  1 y K=249).
;
; RETARDOS de 0.5 hasta 20 segundos ---------------------------------------------------
;
Retardo_20s ; La llamada "call" aporta 2 ciclos máquina.
movlw d'200' ; Aporta 1 ciclo máquina. Este es el valor de "N".
goto Retardo_1Decima ; Aporta 2 ciclos máquina.
Retardo_10s ; La llamada "call" aporta 2 ciclos máquina.
movlw d'100' ; Aporta 1 ciclo máquina. Este es el valor de "N".
goto Retardo_1Decima ; Aporta 2 ciclos máquina.
Retardo_5s ; La llamada "call" aporta 2 ciclos máquina.
movlw d'50' ; Aporta 1 ciclo máquina. Este es el valor de "N".
goto Retardo_1Decima ; Aporta 2 ciclos máquina.
Retardo_2s ; La llamada "call" aporta 2 ciclos máquina.
movlw d'20' ; Aporta 1 ciclo máquina. Este es el valor de "N".
goto Retardo_1Decima ; Aporta 2 ciclos máquina.
Retardo_1s ; La llamada "call" aporta 2 ciclos máquina.
movlw d'10' ; Aporta 1 ciclo máquina. Este es el valor de "N".
goto Retardo_1Decima ; Aporta 2 ciclos máquina.
Retardo_500ms ; La llamada "call" aporta 2 ciclos máquina.
movlw d'5' ; Aporta 1 ciclo máquina. Este es el valor de "N".
;
; El próximo bloque "Retardo_1Decima" tarda:
; 1 + N + N + MxN + MxN + KxMxN + (K-1)xMxN + MxNx2 + (K-1)xMxNx2 +
;   + (M-1)xN + Nx2 + (M-1)xNx2 + (N-1) + 2 + (N-1)x2 + 2 =
; = (2 + 4M + 4MN + 4KM) ciclos máquina. Para K=249, M=100 y N=1 supone 100011
; ciclos máquina que a 4 MHz son 100011 µs = 100 ms = 0,1 s = 1 décima de segundo.
;
Retardo_1Decima
movwf R_ContC ; Aporta 1 ciclo máquina.
R1Decima_BucleExterno2
movlw d'100' ; Aporta Nx1 ciclos máquina. Este es el valor de "M".
movwf R_ContB ; Aporta Nx1 ciclos máquina.
R1Decima_BucleExterno
movlw d'249' ; Aporta MxNx1 ciclos máquina. Este es el valor de "K".
movwf R_ContA ; Aporta MxNx1 ciclos máquina.
R1Decima_BucleInterno         
nop ; Aporta KxMxNx1 ciclos máquina.
decfsz R_ContA,F ; (K-1)xMxNx1 cm (si no salta) + MxNx2 cm (al saltar).
goto R1Decima_BucleInterno ; Aporta (K-1)xMxNx2 ciclos máquina.
decfsz R_ContB,F ; (M-1)xNx1 cm (cuando no salta) + Nx2 cm (al saltar).
goto R1Decima_BucleExterno ; Aporta (M-1)xNx2 ciclos máquina.
decfsz R_ContC,F ; (N-1)x1 cm (cuando no salta) + 2 cm (al saltar).
goto R1Decima_BucleExterno2 ; Aporta (N-1)x2 ciclos máquina.
return ; El salto del retorno aporta 2 ciclos máquina.
;
;En total estas subrutinas tardan:
; - Retardo_20s: 2 + 1 + 2 + (2 + 4N + 4MN + 4KMN) = 20000807 cm = 20 s.
; (N=200, M=100 y K=249).
; - Retardo_10s: 2 + 1 + 2 + (2 + 4N + 4MN + 4KMN) = 10000407 cm = 10 s.
; (N=100, M=100 y K=249).
; - Retardo_5s: 2 + 1 + 2 + (2 + 4N + 4MN + 4KMN) =  5000207 cm =  5 s.
; (N= 50, M=100 y K=249).
; - Retardo_2s: 2 + 1 + 2 + (2 + 4N + 4MN + 4KMN) =  2000087 cm =  2 s.
; (N= 20, M=100 y K=249).
; - Retardo_1s: 2 + 1 + 2 + (2 + 4N + 4MN + 4KMN) =  1000047 cm =  1 s.
; (N= 10, M=100 y K=249).
; - Retardo_500ms: 2 + 1     + (2 + 4N + 4MN + 4KMN) =   500025 cm = 0,5 s.
; (N=  5, M=100 y K=249).

; ===================================================================
;   Del libro "MICROCONTROLADOR PIC16F84. DESARROLLO DE PROYECTOS"
;   E. Palacios, F. Remiro y L. López.
;   Editorial Ra-Ma.  www.ra-ma.es
; ===================================================================

Solo la copias a un TXT/ Guardar como/tipo ( todos los archivos ) nombre  RETARDOS.inc.
Y solo la llamas desde el programa con call.
Saludos !!!

Vangeluz

Desconectado jorgenuviola

  • PIC16
  • ***
  • Mensajes: 148
    • rat argentina!!
Re: Video compuesto para TV con pic16f84
« Respuesta #18 en: 05 de Octubre de 2014, 17:20:25 »
muchas gracias Vangeluz!!! impecable tu aporte, todavia no aprendi a manejar .inc, me voy a poner al dia con este tema. Esta bueno porque se acota en tiempos solo a lo que consume el comando call.


Por otro lado hice un avance, con las ideas de los muchachos hice en la programacion solo un sincro vertical, es decir no hay sincronismo impar. Lo programe cada 304 lineas, el sincronismo vertical consiste en 6 pulsos de 32US en logico 1, 5 pulsos de 32US en logico 0 y por ultimo 5 pulsos de 32US en logico 1. Cuando cuenta 304 lineas salta al sincronismo vertical. Los tiempos son exactos.

 El resultado fue este que no se exactamente que estoy viendo, deberia ver un solo sincro pero veo varios, no se ve el color negro sino un gris, lo que me dice que hay algun tiempo que esta mal. Lo que si quedo estable a diferencia de las pruebas anteriores que fueron un desastre. Les dejo el video.


feature=youtu.be

Ahora si estoy medio perdido, porque no logro identificar en lo que estoy viendo que es lo que esta mal.
¿debo hacer el sincro impar?
Si lo tuviera que hacer ¿acorto un pulso de video a la mitad? o ¿la diferencia de video la da el ultimo pulso del sincro vertical que es de 64US en lugar de 32?

Desconectado robertomasconde@hotmail.c

  • PIC10
  • *
  • Mensajes: 2
Re: Video compuesto para TV con pic16f84
« Respuesta #19 en: 10 de Febrero de 2015, 11:43:05 »
buenos dias hace unos años arranque a hacer un programa igual para truchar el cable y cuando lo temine ya estaba obsoleto en cuanto llegue a casa lo subo
deje de estudiar este tema por algunos años y hoy estoy retomandolo porque me gusta realmente pero reconosco que si te desenchufas despues tenes que arrancar practicamente de cero el proyecto que te comento genera el sincronismo completo impulsos de borrado igualadores y sincronismo es para un 16f84 y un cristal de 4 mhz lo probe con proteus y el occiloscopio y andava de vuelo

Desconectado robertomasconde@hotmail.c

  • PIC10
  • *
  • Mensajes: 2
Re: Video compuesto para TV con pic16f84
« Respuesta #20 en: 10 de Febrero de 2015, 19:45:25 »
bueno aca lo subo espero les sirva

Desconectado misterweb

  • PIC16
  • ***
  • Mensajes: 111
Re: Video compuesto para TV con pic16f84
« Respuesta #21 en: 17 de Febrero de 2015, 17:43:14 »
Muchas gracias Jorge por tu aporte que me parece muy interesante, yo me manejo con la familia de microcontroladores 18F pero basicamente seria lo mismo.

Mi intencion seria hacer un pequeño osciloscopio, de tal forma que la onda capturada se pudiera presentar en pantalla mediante la entrada de video.

Bueno y otras aplicaciones interesantes que se podrian hacer.

Haber si encuentro un momento y adapto tu programa al PIC y puedo ver los resultados.


Un saludo y gracias por todo:




________________________________________________________________
Mi Blog

https://misterelectronico.wordpress.com/entranador-fabricacion-casera/